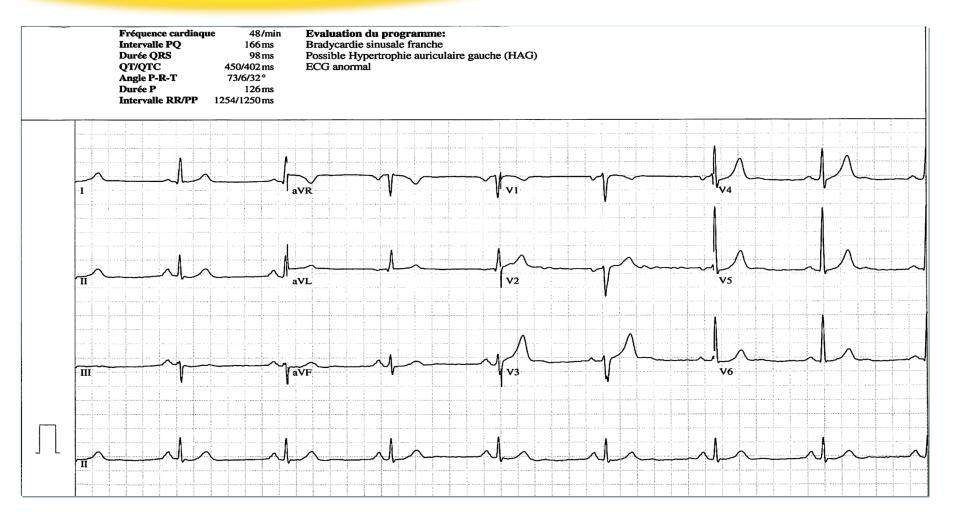
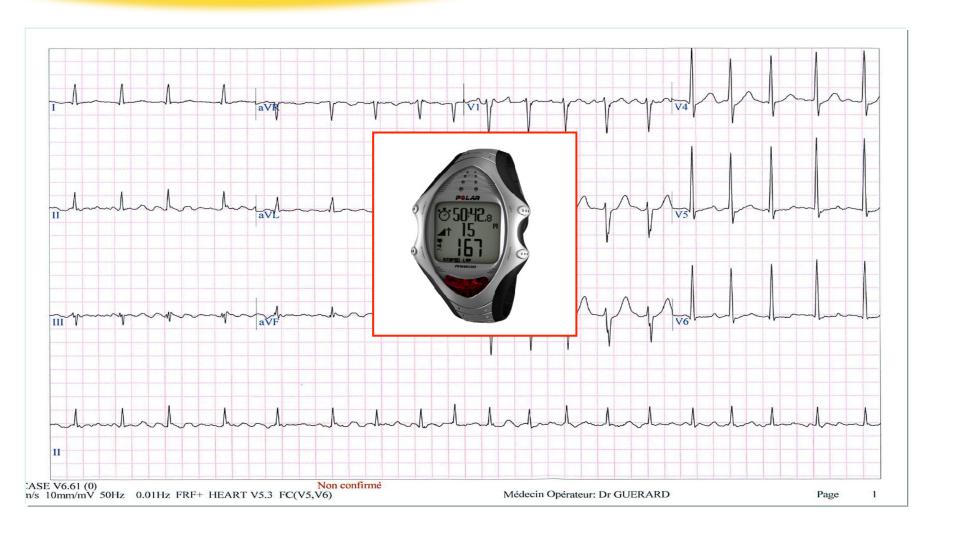


Dyspnée chez le sportif: vue par le cardiologue

Dr Sylvain GUERARD
Cardio-Bron

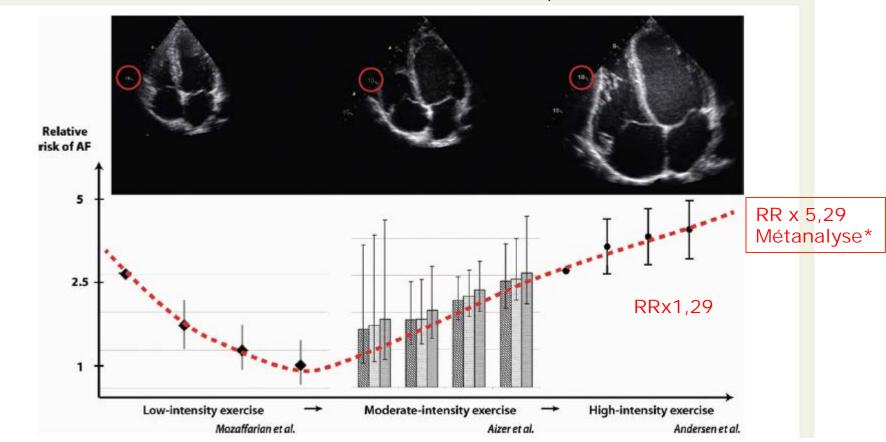
Dyspnée chez le Meilleur Ouvrier de France





60 ans, HTA sous ARA II CAP 3-4 sorties/sem, 1-2 marathon/an Dyspnée lors de course à pied « Jambes coupées »

ECG et Echocardiographie sans anomalie



EE: 240 watts, VO2 max: 41,1 ml/kg/min

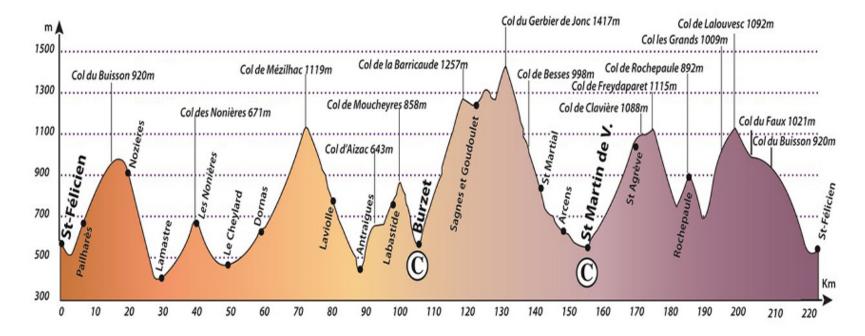
FA et sport: interaction entre exercice et santé

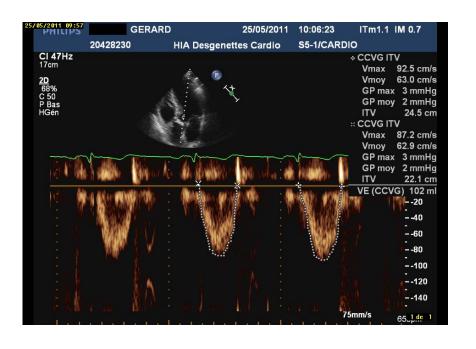
André La Gerche Europ. Heart J 2013, 34: 3599-3602

AP de loisir → FA -25% à -36% The cardiovascular health study

RR x 1,2 si jogging 5-7j/sem Physician's health study

- ✓ Gerard 63 ans
- √ Cyclo-sportif (15.000 km /an)
 - > « La Marmotte » 174 km D+ 5000 m
 - ➤ Le Mont Ventoux
- ✓ 180 cm 74 Kg
- ✓ 135/85 mm Hg sous lercanidipine 20
- ✓ ECG: sinusal (50 / min) HVG





- ✓ « L' ARDECHOISE »
 - > 220 km
 - > D+ 4270 m
 - > 10 cols

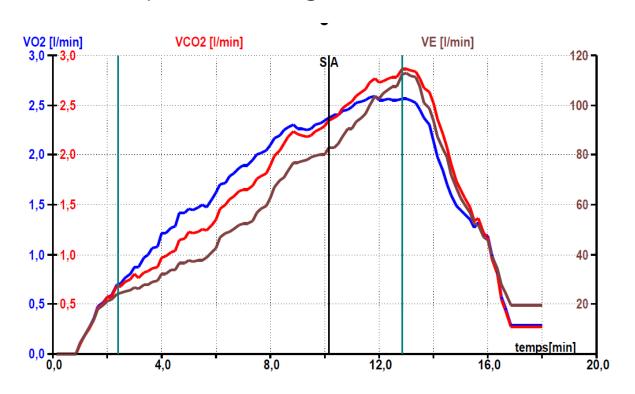
» Dyspnée d'effort Dyspnée des cols

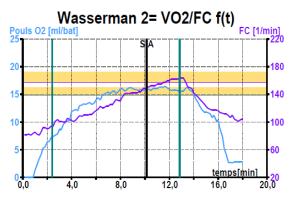
Gradient moyen: 41-43 mm Hg

V max: 4 m/s

Surface aortique indexée: 0,6 cm²/m²

Dtd VG: 54 mm


SIV: 13-14 mm


FEVG: 65%

VO2 max : 35 ml/kg/min, 237 watts (147 %)

Fc max: 164 bpm (104% FMT)

SV1:142 bpm, 31ml/kg/min (88% VO2 max)

BP

Rest: 135/85 mm Hg

200w: 190/95 mm Hg

212w: 190/95 mm Hg

225w: 190/95 mm Hg

237w: 190/95 mm Hg

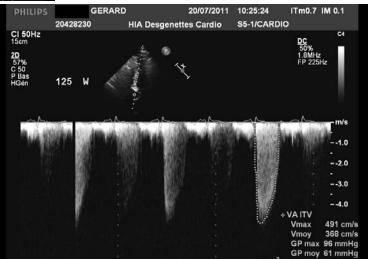
Echocardiographie d'effort: 25 w /2 min, max : 215 w

125w 61 mm Hg

20428230 HIA Desgenettes Cardio S5-1/CARDIO

C1 48Hz
16cm

2D
50%
1.8MHz
FP 225Hz

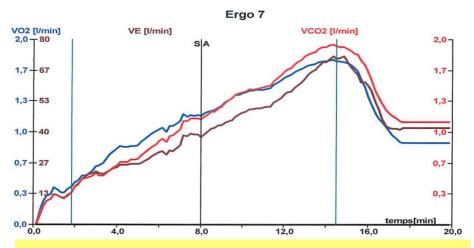

C 50
P Bas
HGén

175W

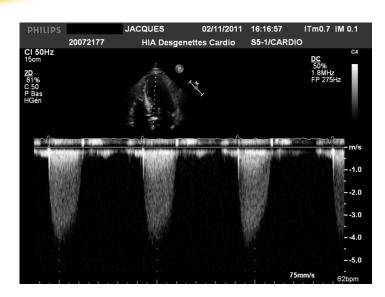
--1.0

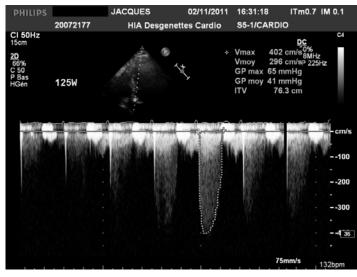
VA ITV
Vmax
483 cm/s
Vmoy 378 cm/s
GP max 93 mmHg
GP moy 65 mmHg
ITV
Vmax 483 cm/s
Va ITV
Vmax 503 cm/s
GP max 101 mmHg
GP moy 63 mmHg
ITV 51.62 in

75w 53 mmHg

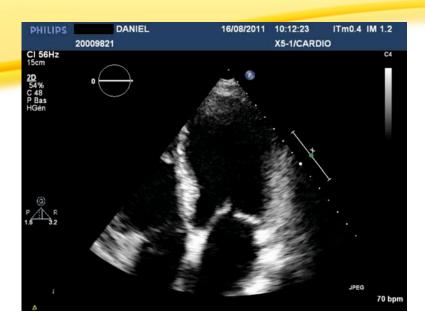


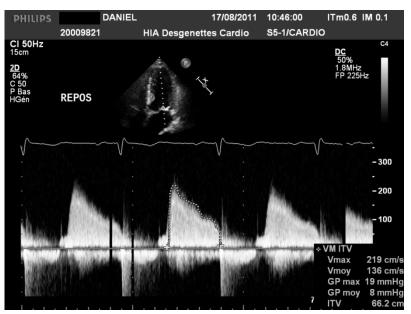
175w 65 mm Hg


Dyspnée d'effort chez le « runner » valvulaire

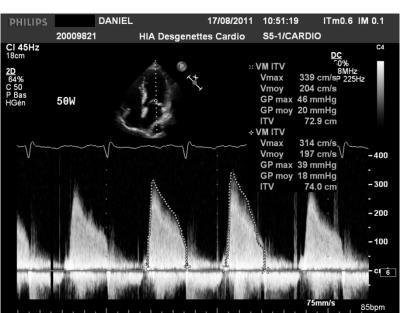

- ✓ Jacques, 72 ans 165 cm/79 kg
- ✓ Course à pied loisir
- ✓ RAC serré / suivi semestriel
 - > 0.4 cm²/m², V 4.3m/s, Gmoy : 45 mmHg
 - ➤ DLG -12%

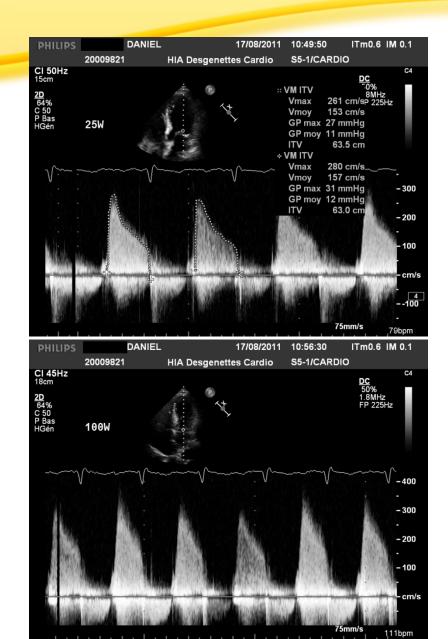
Nom: ud prénom: s né(e): 06.08.1939		72 ans BMI: 165 cm Grais.: 79 kg manip.:		:	29,0 kg/m2 Emilie TRUCHET				
IDNR:	2007			culin	médeo		Dr GUERARD		
02.11.2011 / 15:45 Température 25,8 °C Val.norm.: Wasserman, Jones		Pre	s.At. :	992/1016 hPa	humidité : G		28.09.2012 / 1 werCube LF8.5H		


150 watts, 146 bpm, **22.5** ml/kg/min (104%) 125/66 ⇒ 180/80 mmHg



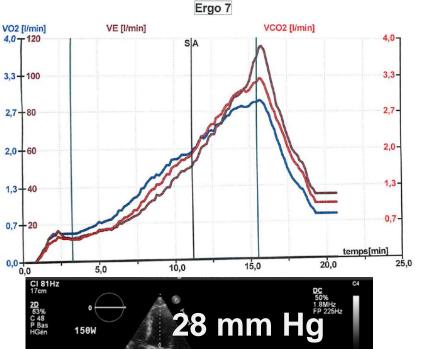
Dyspnée chez cyclotouriste valvulaire


- ✓ Daniel 62 ans
- ✓ Cyclotouriste 6.000km/an
- Symptomatique en vélo lors des ascensions avec les « jeunes »
- ✓ RM lâche
 - gradient moyen à 8 mm Hg
 - > Pas d'HTAP
- ✓ Epreuve d'effort: 150w
 - > Arrêt pour dyspnée
 - Pas d'ischémie
 - Profil TA adapté
 - > Pas de FA



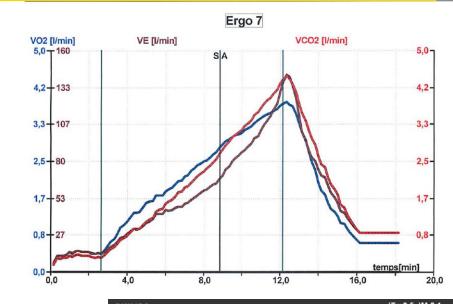
RM lâche à l'effort 25-30 mmHg à 100watts

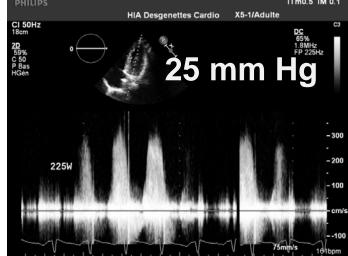
Dyspnée du sportif opéré



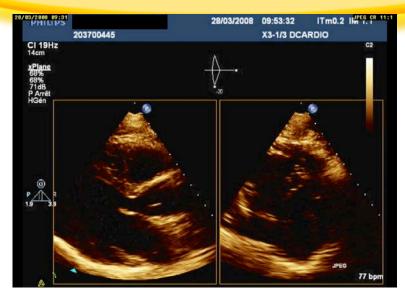
- ✓ Triathlète 32 ans
- ✓ Prolapsus mitral et IM 4/4
- ✓ Résection de P2 et anneau de Tailor n°33
- ✓ Dyspnée d'effort + + +
- ✓ ETT de repos : Gm 5 mmHg

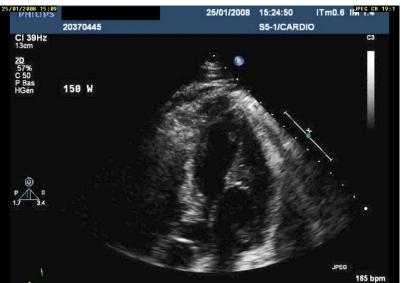
- ✓ Basketteur Pole Espoir 16 ans
- ✓ Déchirure de P2 avec large fente et plusieurs cordages rompus/ EI
- ✓ Résection large de P2 et anneau de Tailor n°29
- ✓ Dyspnée d'effort ++
- ✓ ETT de repos: Gm à 4 mmHg

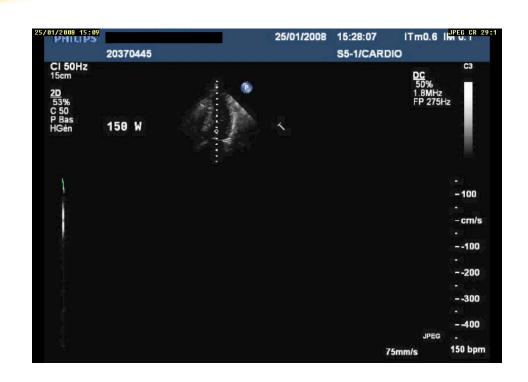

Explorations à l'effort: VO2 et échocardiographie d'effort


260 watt (115%), 176 bpm 2.84 l/min (88%), 16.5 ml/bat (76%)

PAPS 55 mmHg

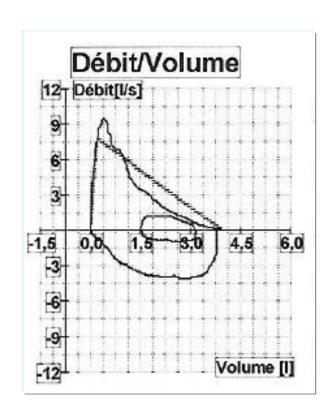

335 watt (108%), 187 bpm 3.8 I (98%), 20.3 ml/bat (97%)

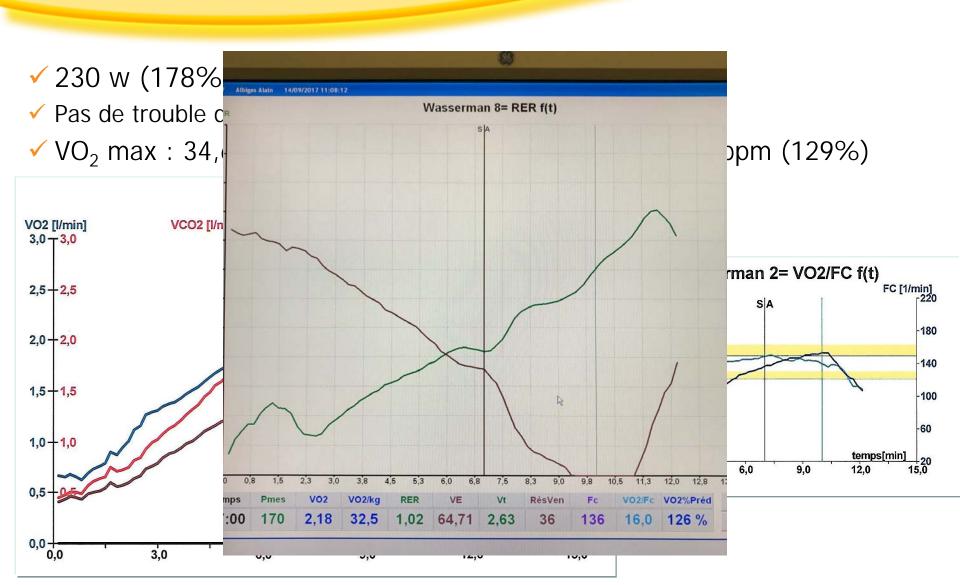




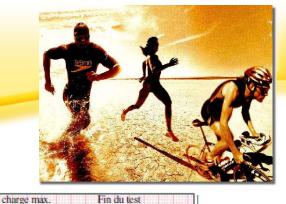
Dyspnée et HVG du rugbyman

Pilier,
Dyspnée d'effort
Anomalie de la repolarisation
HVG concentrique




Palier 150 w et 165 bpm Gradient intra VG 36 mmHg

Dyspnée d'effort chez le cyclo-sportif vétéran


- ✓ Cyclo-sportif 72 ans, coronarien revascularisé (2 x PAC) en 2008
- ✓ Sous AAP et Statines
- √ 10.000 km par an.
 - > Etape du tour tous les ans
- ✓ TVO discret de découverte récente
 - CVin 3,8 I (99%), VEMS 2,87 I (101%)
 - DEM25 67%, DEM 50 62%, DEM 75 91%
 - Sous SYMBICORT°
- ✓ Dyspnée d'effort dans les cols
- ✓ ECG et ETT sans anomalie notable

Dyspnée d'effort chez le cyclo-sportif vétéran

Dyspnée d'effort chez le triathlète

RECUP.

5:00

√	51 ans, 0			
	3:00	10:55	11:14	5:00
	GAP 2/se	miss Wélo 2	/sem/et nat	ation-3/sem
	120/70 mmHg	200/100 mmHg	200/100 mmHg	

✓ Hérédité coronarienne, LDL41, 17 g/4

0.05 mm

0.05 mm

0.05 mm

0.06 mm

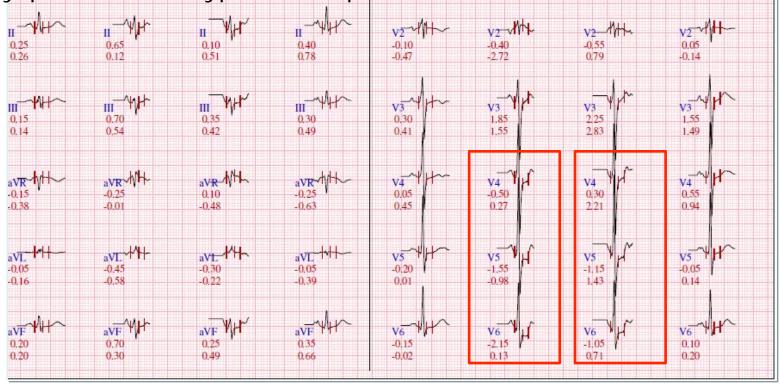
0.06 mm

0.07 mm

0.08 mm

0.0

EFFORT


11:14

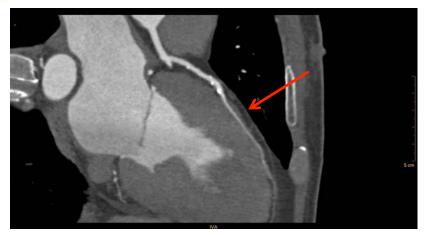
ST max.

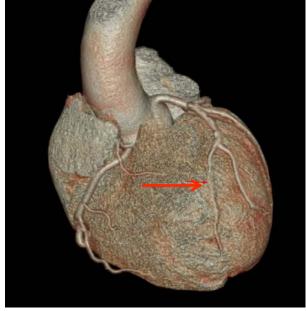
EFFORT

10:55

√ Dyspnée d'effort type « blockpnée » surtout en vélo > CAP




ST au repos


EFFORT

0:00

Coro scanner: pont myocardique IVA moyenne

Dr LEMOINE F. HIA Desgenettes

Dyspnée d'effort chez le triathlète

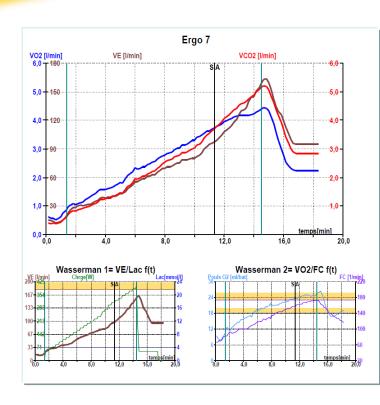
- ✓ Scanner coronaire
 - Score calcique d'Agatston = 189
 - Pont myocardique profond de l'IVA moy sur 3 cm avec une IVA distale grêle
 - > Plaques calciques de l'IVA proximale et moyenne sans sténose
- ✓ Scintigraphie myocardique
 - > FEVG post stress 71%
 - Score de perfusion au stress 5/80
 - Déficit perfusionnel total à l'effort à 4% du myocarde
 - « Possible petite ischémie septo-basale inhabituelle mais envisageable comptetenu de l'anomalie de l'IVA et de l'epreuve d'effort positive »
- ✓ Echocardiographie d'effort à venir

CAT devant une dyspnée chez le sportif

- √ Sémiologie de la dyspnée
 - « souffle court »
 - « Blockpnée, jambes coupées »
 - Bruits respiratoires inhabituels
 - Toux per ou post exercice
- ✓ Dyspnée « relative » plus que dyspnée « absolue »
 - ➤ > Performances sportives
- ✓ Dyspnée « isolée » ou « accompagnée »
 - Douleur thoracique, sensations arythmiques...
- ✓ Ancienneté, mécanisme d'installation
- ✓ Contexte sportif
 - > Type de sport
 - niveau d'entrainement

Perception inconfortable de la respiration Gêne subjective exprimée et quantifiée Tolérance dépendant de la subjectivité, du vécu, des émotions et de la psychologie du sportif

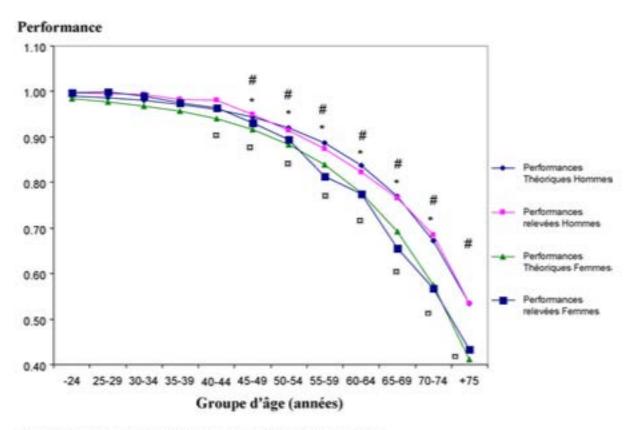
CAT devant une dyspnée chez le sportif


- ✓ Examen clinique
 - Auscultation pulmonaire
 - souffle cardiaque ?
- ✓ Electrocardiogramme
 - > Trouble de la conduction AV
 - Anomalie de la repolarisation (HVG...)
- ✓ Echocardiographie de repos
 - Dilatation, HVG, valvulopathie
 - Fonction systolique et diastolique
 - > HTAP

- ✓ Epreuve d'effort maximale avec mesure des échanges gazeux
- ✓ Echocardiographie d'effort

Analyse des échanges gazeux

- ✓ Pas de normes pour les sportifs
- ✓ Résultats cohérents
 - > Avec la discipline
 - ➤ Avec les performances du sujet +++
 - Haut niveau
 - Homme > 50 mm/kg/min
 - Femme > 45 ml/kg/min
- √ VO2 > 120 à 160 % des théoriques
- ✓ Pouls d'oxygène > 110 à 160 % théo.
- ✓ SV1 > 70-85 % VO2max théo.,
- ✓ Profil tensionnel ; réserves ventilatoires ; désaturation
- √ Fc max, Insuffisance chronotrope (5-7 bpm/100 ml O₂)



Le VO2 max : critères objectifs du niveau d'entrainement

	Pic de VO2 (% Vo2 max théo)	SV1 (% VO2 max théo)
Athl ète	> 140	90-120
Sujet entrainé	110-140	60-80
Sujet normal	90-110	50-60
Déconditionné	80-90	40-50
Diminution légère	70-80	
Diminution modérée	50-70	
Diminution sévère	≤ 50	< 40

Machine à son maximum de rendement vers l'âge de 25 ans Baisse avec l'âge de 0,5 à 1 ml/kg/an

F. Sultana et al. / Science & Sports 23 (2008) 130-135

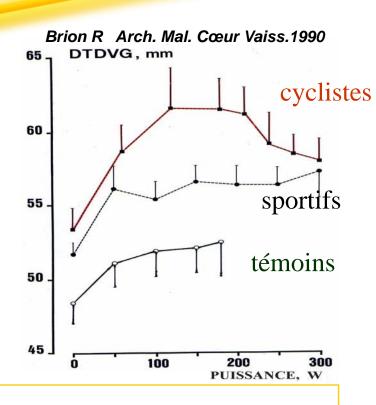
La meilleure performance correspond à une valeur de 1

^{*} Différence significative avec le groupe d'âge précédent chez les hommes

Différence significative avec le groupe d'âge précédent chez les femmes

[#] Différence significative entre les hommes et les femmes pour un même groupe d'âge

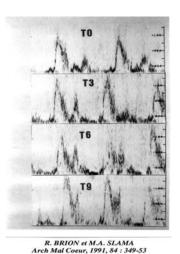
Dyspnée du sportif: cœur ou poumon?


- ✓ Dyspnée pulmonaire
- > Spirométrie de repos anormale
- > FC max non atteinte
- ▶ Pas de seuil ventilatoire
- ➤ Cinétique du pouls d'O2 +
- ➤ Réserve ventilatoire < 30%
- ➤ Désaturation < 95%
- ➤ Cinétique FR et VT
- Spirométrie post-effort

- ✓ Dyspnée cardiaque
- > Spirométrie de repos normale
- Critères max pour faible puissance
- Seuils ventilatoires individualisables
- ➤ Cinétique de pouls d'O2 –
- ➤ Réserve ventilatoire > 30%
- ➤ Pas de désaturation >5%
- ➤ Vd/Vt peu diminué
- Spirométrie post-effort normale
- ΔFC/ΔVO2 et ΔVO2/Δ W augmentés

Explorations physiologiques du VG

Le VG des sportifs se dilate pendant l'effort


- ✓ ↑ Vtd +18%
- ✓ ↓ Vts -21%
 - > ⇒ VES linéaire ↑ de + 45%
 - L'augmentation du Vtd contribue à 73% de l'augmentation du VES

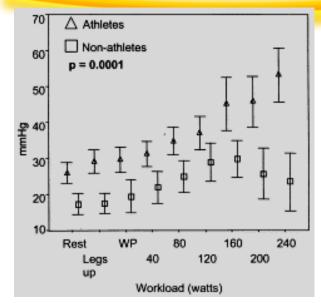
Sundstedt M. Acta Physiologica 2007; 182 (1):45-51

Explorations physiologiques du VG

Etude de l'hémodynamique cardiaque pendant l'effort

Brion R Arch. Mal. Cœur Vaiss. 1991

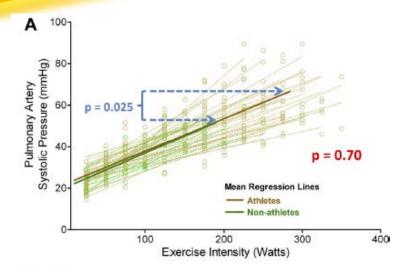
	0 W	60 W	120 W	150 W
ITV (m)	0,22	0,26	0,29	0,30
Vmax (m/s)	0,92	1,29	1,69	1,70

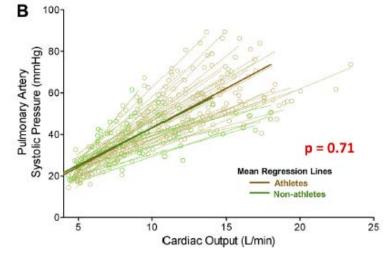


- ✓ Flux aortique x 2 au pic (Vmax)
 - → ↓ 73% du temps de remplissage du VG
 - > ↓ 31% temps d'éjection VG
 - → ↓ 62% du temps de relaxation isovolumétrique
- √ Vélocités du Flux mitral x 2

Evaluation de la PAPs à l'effort chez l'athlète

Bossene et Al JACC 1999 D'Andrea et al Int J Cardiol 2011




PAPs + élevée chez les athlètes au repos et à chaque palier

- ✓ Ø linéaire de la PAPs jusqu'à 240 watts
- ✓ Ø de la PAPs en rapport avec celle du VES

Seuil physiologique chez sportif

- 40 mmHg au repos
- 60 mmHg à l'effort

La Gerche A et al JAppl Physiol 2010

Les causes de dyspnée d'origine cardiaque chez le sportif

- ✓ Sportif < 35 ans</p>
- ✓ Arythmie cardiaque
 - Cardiomyopathie hypertrophique
 - Cardiomyopathie arythmogène du VD
 - Canalopathie
 - Myocardite
- ✓ Sans oublier
 - > Anémie
 - > Thalassémie

- √ Sportif > 35 ans
- ✓ Athérome coronaire
 - Plaques asymptomatiques au repos ou pour effort peu intense
 - Dyspnée d'effort, blockpnée d'effort pour des efforts intenses
- ✓ Troubles du rythme
 - > Fibrillation atriale
- √ Valvulopathie
 - > Rétrécissement aortique
 - > Insuffisance mitrale
 - > Rétrécissement mitrale

Conclusion

- ✓ Symptôme fréquent chez le sportif
 - ➤ Origine respiratoire (AIE, HRBE, pathologies respiratoires) + + +
 - ➤ Origine musculaire ou périphérique ++
 - Mais aussi une origine cardiaque
 - Retentissement d'une myocardiopathie (dilatée ou hypertrophique) d'une valvulopathie uniquement pour des efforts intenses
 - Contemporaine d'un trouble rythmique surtout supra ventriculaire
- ✓ Exploration au repos
 - ➤ ECG, Echocardiographie
- ✓ Exploration à l'effort + + +
 - > Epreuve d'effort avec mesure des échanges gazeux
 - > Echocardiographie d'effort
 - ➤ Holter ECG en situation