



# Dyspnée chez le sportif (point de vu du pneumologue)

Dr Cristina Pistea
Pneumologue
Service de Physiologie et d'Explorations Fonctionnelles
CHU de Strasbourg

• Conflit d'intérêts: aucun

 Les sportifs peuvent se plaindre des symptômes respiratoires à l'effort intense

 La différence entre l'adaptation ventilatoire physiologique à l'effort intense et la dyspnée d'effort liée aux pathologies cardiorespiratoires = difficile

### Sportif A

- Se dit « fatigué » plus vite que les autres collègues de son équipe
- s'arrête fréquemment pour récupérer le souffle
- Il est peut être pas assez entrainer et/ou avoir une pathologie obstructive des voie aériennes

### Sportif B

- Plainte principale: « dyspnée à l'effort »
- s'arrête fréquemment pour récupérer le souffle
- Il est peut être simplement pas assez entrainer

### Sportif C

- Plainte principale: « dyspnée à l'effort »
- s'arrête fréquemment pour récupérer le souffle
- a les mêmes symptômes, mais il peut avoir une pathologie cardiovasculaire

### Cas clinique nr 1 (BC)

- F, 20 ans, 3eme année de médecine, en 2017 consulte le cardiologue pour certificat de non contre-indication à la pratique de handball (12h/semaine depuis 5-6ans)
- Dyspnée d'effort pour les efforts intenses surtout en endurance, de façon intermittente
- ECG: trouble de la repolarisation avec ondes T négatives en territoire inférolatérale – examens complémentaires : normaux (IRM cardiaque, coroscanner, échographie cardiaque d'effort, test d'effort jusqu'à 270W et FC à 190 bpm)
- Avis pneumologique: EFR normales, suspicion de BIE et traitement bronchodilatateur proposé en traitement de fond et une prise avant l'effort
- Pas d'amélioration environ 8 mois après.
- Reprise des entrainements après les vacances d'été: aggravation de la dyspnée d'effort, diminution des performances, n'arrive plus à poursuivre les entrainements avec les collègues de l'équipe
- Réévaluation cardiologique: RAS en plus des anomalies ECG connues
- Epreuve d'effort?

### Cas clinique nr 2 (PL)

- M, 17 ans, natation, compétitions niveau départemental, dyspnée d'effort depuis environ 1 an
- Allergie : RCJ aux pollens d'arbres traitée par Aerius
- Nombreuses épisodes de rhume et bronchite aigue en hiver
- Son médecin traitant lui prescrit la Ventoline lors d'un épisode de bronchite
- Depuis il utilise la Ventoline fréquemment lors des difficultés respiratoires à l'effort en piscine
- Dyspnée+sibilantes -> L'entraineur se pose la question d'un asthme d'effort et d'un avis pneumologique.
- Spirométrie: normale. Pas de changement du VEMS au test de réversibilité.
- Test d'effort: très bonnes capacités aérobies 325W, adaptation ventilatoire normale, spirométrie normale pré et post-effort. Pas d'anomalie cardiovasculaire à l'effort.
- Examens complémentaires?

### Cas clinique nr 3 (GA)

- F, 42 ans, triathlon, marathon, Ironman (depuis 15 ans)
- Depuis 1 an: toux sèche, pyrosis, allergie (RCJ) probablement aux pollens d'arbres depuis environ 2 ans,
- Depuis 4 mois baisse des performances, ne support plus l'athmosphère de la piscine car accentuation de la symptomatologie
- Bilan cardiologique: sans particularité.
- Avis pneumologique
- EFR: trouble ventilatoire obstructive modérée, réversible après la Ventoline
- Proposition d'un traitement bronchodilatateur de fond + bronchodilatateur de court durée d'action avant l'effort
- Demande AUT?

- Causes respiratoires:
  - Bronchoconstriction induite par l'exercice
  - Obstruction laryngée induite par l'exercice (=Dyskinésie des cordes vocales)
  - Hypoxémie d'exercice
  - Hyperventilation à l'effort
  - Œdème pulmonaire à l'exercice

• Bronchoconstriction induite à l'exercice ?



• Asthme d'Effort?



### Asthme d'effort

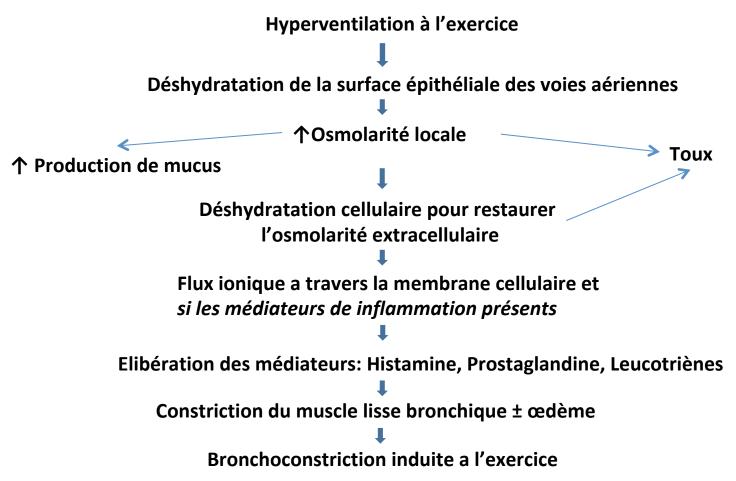
- = symptômes apparues à l'effort et signes d'asthme apparus après un exercice intense
  - Signe d'asthme non contrôlé

### Bronchoconstriction induite à l'exercice

- = la diminution du VEMS après un exercice standardisé en laboratoire, sans la manifestation clinique de l'asthme
- peut être un phénomène physiologique qui apparait chez les athlètes en absence de signe d'asthme
  - la prévalence: 20%

La prévalence de BIE (avec ou sans asthme) chez les athlètes d'Elite et les athlètes Olympiques = 30-70%

# 2 phénotypes d'asthme


1) asthme depuis l'enfance souvent associé a des divers allergies

2) apparition des symptômes pendant la carrière sportive après des entrainements répétés et d'intensités élevées (± allergies)

# Facteurs de risque:

- L'atopie
- Le type de sport et rôle de l'environnement
  - Sports d'endurance
  - Natation
  - Sports d'hiver

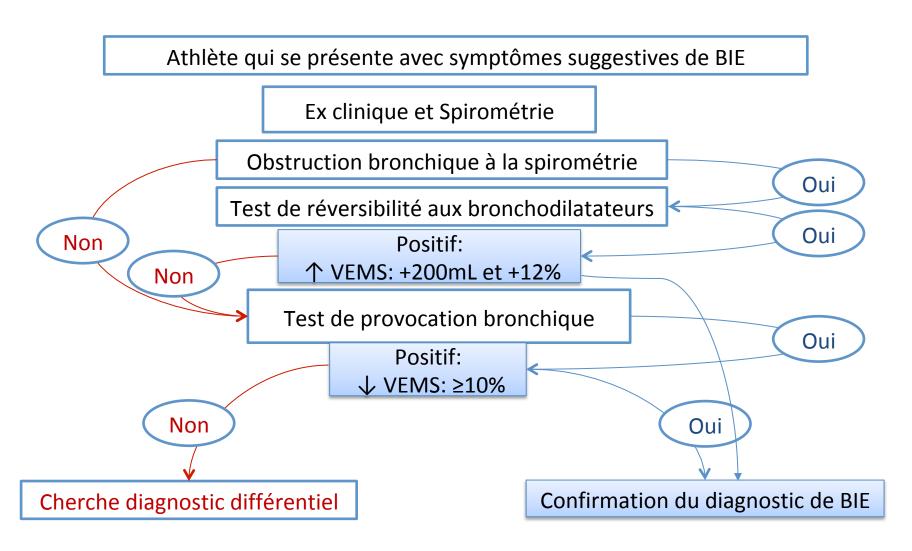
# Physiopathologie de la BIE



# <u>Pourquoi chercher chez l'athlète la BIE ou l'asthme d'effort?</u>

 Implications potentiels sur les performances en compétition et à l'entrainement

inflammation chronique persistante + irritation épithéliale persistante
remodelage des voies aériennes+ modifications fibrotiques
diminution progressive de la fonction pulmonaire
obstruction bronchique fixe


# Comment faire le diagnostic?

### – Cliniquement:

- Sibilantes/sifflement, toux, dyspnée, ± oppression thoracique
- Habituellement 5 à 30min après l'exercice intense (parfois pendant l'exercice)
- Amélioration progressive après la fin de l'effort
- Ex clinique: dyspnée expiratoire, sibilantes expiratoires, ronchis, tirage intercostale
- Athlètes: symptômes atypique, souvent la toux

# Comment faire le diagnostic?

- Ex complémentaires:
  - Spirométrie de repos: très peu prédictive d'asthme (surtout athlètes d'Elite)
  - Recherche d'atopie
  - Tests de provocation de bronchoconstriction
    - Test d'effort en air sec
    - Test d'hyperventilation volontaire isocapnique
    - Test de provocation au mannitol, solution saline



## Prise en charge:

Asthme, y compris l'asthme d'effort, chez le sportif = comme chez les autres patients

### Mais, besoin de:

- Test de provocation positif pour prouver l'existance de BIE (hyperventilation isocapnique/ test d'effort)
- Vérifier la prescription des médicaments en fonction des médicaments autorisés par les agences antidopages!!!!
- demander une AUT (Autorisation d'Utilisation à des fins Thérapeutique) - durée de validité dans l'asthme: 4 ans

# Le traitement initial

- un bronchodilatateur de courte durée d'action
   (Ventoline) avant l'effort susceptible d'induire une BIE
  - 2-4 fois/semaine (moins d'une fois/jours)
  - Si utilisé quotidiennement :
    - induction d'une tolérance et limitation de l'efficacité
    - Possible ajout : antileucotriène ( Montelukast)

- Si besoin d'utilisation quotidienne:
  - vérification de la technique d'inhalation et de l'adhérance au traitement
  - réévaluation pneumologique
  - introduction d'une tt combiné: corticoïde inhalé + bronchodilatateur en tt de fond

- Mesures non pharmacologiques:
  - Période d'échauffement (induction d'une BIE discrète) suivi d'une période réfractaire de 2 à 4h
  - Alimentation riche en vit C, huile de poisson

# Beta2agonists de courte durée d'action (Salbutamol, Terbutaline)

- Administré 15-20min avant l'exercice durée d'effet de 2
   à 4h pour prévenir la BIE ou l'atenuer, < 1fois/jour</li>
- 15-20% non réponse
- utilisation quotidienne = > tolérance :
  - ↓ durée de protection avant apparition de la BIE
  - ↑ durée de récupération après administration
  - Déterminé par désensibilisation des R beta2 sur les mastocytes et le muscle lisse bronchique
  - -> sont utilisé en générale que de façon intermittente en prévention de la BIE et si utilisation quotidienne -> switch sur corticoïde + bronchodilatateur de longue durée d'action (Symbicort, Seretide, Innovair)

- Beta2agonists de longue durée d'action (Formoterol, Salmeterol):
  - Fréquemment proposé en traitement de fond quand la Ventoline est utilisé quotidiennement
  - L'effet protecteur ↓ quand utilisation quotidienne
  - Initialement: durée de l'effet: 6-12h
  - Après utilisation quotidienne: l'effet diminue à 6h après 30j d'utilisation quotidienne <sup>1</sup>
  - Problème:
    - ↑mortalité et morbidité quand sont utilisé seuls en traitement de l'asthme (sans les corticoïdes inhalés)²
    - ↑ exacerbations et aggravation après arrêt des corticoïdes inhalés associés<sup>3</sup>

## Corticoïdes inhalés:

- Effet sur l'inflammation des voies aériennes
- Ne préviennent pas l'apparition de la tolérance aux beta2 agonistes utilités quotidiennement
- La protection contre la BIE en 4 semaines et est dose-dépendante
- Semble ne pas être protecteurs chez les athlètes ayant BIE sans asthme, par rapport à ceux qui ont BIE et asthme<sup>1</sup>
- Pas d'effet en administration seulement avant l'effort

# Anti-leucotriènes:

- → la BIE et améliore la récupération après l'effort
- Pas de tolérance en utilisation quotidienne
- L'effet peut être plus faible par rapport aux CI et bronchodilatateur de courte durée avant l'effort
- La durée de l'effet est plus prolongée

- Liste des médicaments autorisés :
  - A vérifier sur le site de l'Agence Françaises de Lutte contre le dopage (AFLD): <u>www.afld.fr</u>
    - Nom du médicament
    - Substance autorisé/interdite
    - Procédure d'autorisation
    - Dosage à ne pas dépasser
  - Besoin d'AUT pour: Ventoline, Salmeterol,
     Formoterol, Glucocorticoïdes oraux

# <u>Pourquoi demander une AUT en cas de prise de Ventoline pour BIE?</u>

- Dosage autorisé: 800µg/12h et 1600µG/24h.
- Le métabolisme du Ventoline est très variable: il existe des variations interpersonnelles et intrapersonnelles du métabolisme et de l'excrétion de la Ventoline
- Est considéré comme substance anabolisante si dosage urinaire >1000μg/mL
- Quand la dose permise est administrée rapidement, en 3-4h, très probablement le niveau urinaire >1000μG/ mL

### Cas clinique nr 1 (BC)

- F, 20 ans, 3ème année de médecine, en 2017 consulte le cardiologue pour certificat de non contre-indication à la pratique de handball (10-12h/semaine depuis 5-6ans)
- Dyspnée d'effort pour les efforts intenses surtout en endurance, de façon intermittente
- ECG: trouble de la repolarisation avec ondes T négatives en territoire inférolatérale – examens complémentaires : normaux (IRM cardiaque, coroscanner, échographie cardiaque d'effort, test d'effort jusqu'à 270W et FC à 190bpm)
- Avis pneumologique: EFR normales, traitement bronchodilatateur proposé en traitement de fond et une prise proposé avant l'effort
- Pas d'amélioration environ 8 mois après.
- Reprise des entrainements après les vacances d'été : aggravation de la dyspnée d'effort avec sifflement à l'effort, diminution des performances, n'arrive plus à poursuivre les entrainements avec les collègues de l'équipe
- Réévaluation cardiologique: rien à signaler en plus
- Epreuve d'effort ?

### Cas clinique nr 1 (BC) suite

### A l'épreuve d'effort :

- puissance maximale 230W,
- dyspnée d'effort inspiratoire avec sifflement inspiratoire à partir de 205W avec tirage sus claviculaire,
- auscultation pulmonaire: libre et symétrique,
- réserve ventilatoire en fin d'effort conservé.
- Spirométrie post-effort à la 2<sup>e</sup> min de récupération: normales et disparition de la dyspnée inspiratoire!!!!
- Indication d'un avis ORL!
- examen de repos ORL sans particularité,
- EE avec visualisation des cordes vocales en présence de l'ORL: visualisation de la fermeture des cordes vocales à l'effort et immédiatement après: disparition de la dyspnée inspiratoire.

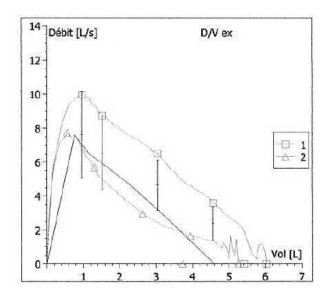
### Cas clinique nr 2 (PL)

- M, 17 ans, natation, compétitions niveau départemental, dyspnée d'effort en depuis environ 1 an
- Allergie : RCJ aux pollens d'arbres traitée par Aerius
- Nombreuses épisodes de rhume et bronchite aigue en hiver
- Prescription la Ventoline lors d'un épisode de bronchite avec toux séquellaire et difficultés respiratoires à l'effort. Depuis il utilise la Ventoline fréquemment lors des difficultés respiratoires à l'effort en piscine
- Apparition des quelques sibilantes lors des épisodes de dyspnée en piscine.
   L'entraineur se pose la question d'un bilan pneumologique.
- Spirométrie: normale.
- Test d'effort:
  - très bonnes capacités aérobies 325W, VO2 pic à 60ml/mn/kg, FC 183bpm,
     adaptation ventilatoire normale, spirométrie normale pré et post-effort. Pas d'anomalie cardiovasculaire à l'effort.
- Examens complémentaires?

### Cas clinique nr 2 (PL)

- Test de provocation par hyperventilation volontaire isocapnique:
  - Chute de VEMS de 30% avec reproduction de la symptomatologie respiratoire
- Traitement?
  - Proposition association corticoïde inhalé + beta2agoniste de longue durée + Ventoline avant l'effort, les jours d'entrainements
- Demande AUT?
  - Oui, car compétition, bon niveau, sera amené probablement à être contrôler
- Suivi pneumologique?
  - Oui, en cas d'aggravation ou exacerbations: nécessité d'augmentation de son traitement +/- corticoïdes oraux + autre demande AUT

Taille: Age: Opérateur:


175,0 cm 17 Années Martine 3 Poids: UF:

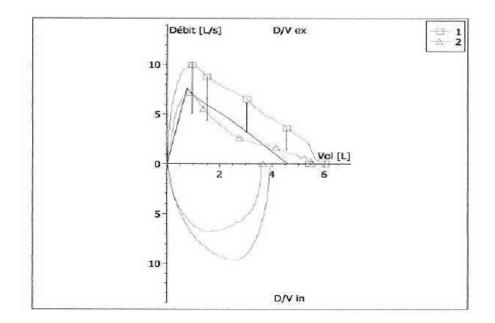
69,0 kg

mar time 5

### Hyperventilation Isocapnique

|               |       | Théo T | héo bas | Pré   | Post % | (post/pr D | % (post/p |
|---------------|-------|--------|---------|-------|--------|------------|-----------|
| VEMS          | [L]   | 3.79   | 3.12    | 5.42  | 3.73   | 68.8       | -31.2     |
| VEMS % CV MAX | [%]   | 83.42  | 74.34   | 89.17 | 71.04  | 79.7       | -20.3     |
| CVF           | [L]   | 4.59   | 3.93    | 6.03  | 5.25   | 87.0       | -13.0     |
| DEP           | [L/s] | 7.61   | 5.05    | 9.95  | 7.74   | 77.7       | -22.3     |
| DEM 75        | [L/s] | 6.54   | 4.38    | 8.74  | 5.67   | 64.9       | -35.1     |
| DEM 50        | [L/s] | 4.64   | 3.14    | 6.53  | 2.97   | 45.5       | -54.5     |
| DEM 25        | [L/s] | 2.40   | 1.41    | 3.58  | 1.65   | 46.1       | -53.9     |
| DEMM 25/75    | [L/s] | 4.22   | 2.74    | 5.82  | 2.77   | 47.6       | -52.4     |




12e Journée CMBSC Evian 2018

Taille: Age: Opérateur: 175,0 cm 17 Années Martine 3 Poids: UF:

69,0 kg

#### Test de Réversibilité

|            |       | Théo    | Pré   | %(Pré/T) | Post  | % (post/T) | % (post/pré) |
|------------|-------|---------|-------|----------|-------|------------|--------------|
| Date       |       | 30/05/1 |       | 30/05/1  |       |            |              |
| Heure      |       | 13:53:4 |       | 14:37:3  |       | v.         |              |
| Substance  |       |         |       |          | HING  |            |              |
| VEMS       | [L]   | 3.79    | 5.42  | 142.9    | 3.66  | 96.6       | -32.41       |
| VEMS % CVF | [%]   | 83.36   | 89.82 | 107.7    | 66.23 | 79.5       | -26.26       |
| CVF        | [L]   | 4.59    | 6.03  | 131.4    | 5.53  | 120.4      | -8.34        |
| DEP        | [L/s] | 7.61    | 9.95  | 130.8    | 7.15  | 94.0       | -28.13       |
| DEM 75     | [L/s] | 6.54    | 8.74  | 133.7    | 5.48  | 83.9       | -37.25       |
| DEM 50     | [L/s] | 4.64    | 6.53  | 140.6    | 2.58  | 55.7       | -60.40       |
| DEM 25     | [L/s] | 2.40    | 3.58  | 149.1    | 1.60  | 66.6       | -55.32       |
| DEMM 25/75 | [L/s] | 4.22    | 5.82  | 137.7    | 2.57  | 60.8       | -55.86       |



Taille: Age: Opérateur: 175,0 cm 17 Années Martine 3 Poids: UF: 69,0 kg

### Test de Réversibilité

|            |       | Théo  | Pré    | % (Pré/T) | Post                | % (post/T) | % (post/pré) |
|------------|-------|-------|--------|-----------|---------------------|------------|--------------|
| Date       |       | 3     | 0/05/1 | 3         | 0/05/1              |            |              |
| Heure      |       |       | 4:37:3 |           | CONTRACTOR OF COMME |            | 11.          |
| Substance  |       |       | Rs'    |           | VENT                | 10 LINE 66 | ouffer.      |
| VEMS       | [L]   | 3.79  | 3.66   | 96.6      | 5.44                | 143.5      | 48.58        |
| VEMS % CVF | [%]   | 83.36 | 66.23  | 79.5      | 89.16               | 107.0      | 34.63        |
| CVF        | [L]   | 4.59  | 5.53   | 120.4     | 6.10                | 132.9      | 10.36        |
| DEP        | [L/s] | 7.61  | 7.15   | 94.0      | 9.08                | 119.3      | 26.90        |
| DEM 75     | [L/s] | 6.54  | 5.48   | 83.9      | 8.56                | 131.0      | 56.12        |
| DEM 50     | [L/s] | 4.64  | 2.58   | 55.7      | 6.35                | 136.9      | 145.75       |
|            |       |       | 2 60   | 66.6      | 3.57                | 149.0      |              |
| DEM 25     | [L/s] | 2.40  | 1.60   | 00.0      | 3.31                | 149.0      | 123.57       |

### Cas clinique nr 3 (GA)

- F, 42 ans, triathlon, marathon, Ironman
- Depuis 1 an: toux sèche, pyrosis, allergie (RCJ) probablement aux pollens d'arbres depuis environ 2 ans,
- Depuis 4 mois baisse des performances, ne support plus l'atmosphère de la piscine car accentuation de la symptomatologie
- Bilan cardiologique: sans particularité.
- Avis pneumologique :
  - EFR: trouble ventilatoire obstructive modérée, réversible après la Ventoline
  - Proposition d'un traitement bronchodilatateur de fond + bronchodilatateur de court durée d'action avant l'effort

**Demande AUT?** 

- Demande AUT?
  - Non, car pas de compétition, oui si elle reprend
- Suivi pneumologique?
  - Oui, car obstruction bronchique,
  - nécessité de réévaluer sa fonction pulmonaire après le traitement bronchodilatateur
  - et de faire le bilan allergologique
- A 3 mois: sous traitement bronchodilatateur: EFR normales: VEMS +450ml: a repris la natation et a augmenté son niveau d'entrainement, tousse moins
- Propositions?
- Poursuivre le traitement et réévaluation pneumologique régulière

# **Conclusions**

- La bronchoconstriction induite à l'exercice est la plus fréquente parmi les causes respiratoires de dyspnée chez le sportif, mais pas la seule
- Peu être à l'origine de la diminution de leurs performances d'effort
- La majorité des sportifs arrive en premier chez le médecin généraliste
- Le diagnostic doit être confirmé souvent par des tests de provocation
- Les traitements doivent contrôler leurs symptômes
- Le médecin, mais également le sportif, doivent savoir que certains médicaments restent sur la liste des substances interdites



# 12ème JOURNEE du Club Mont-Blanc Coeur et Sport



Merci pour votre attention!