Pharmacologie spatiale: to the summit and beyond!

- Pr Pierre BOUTOUYRIE
- Université de Paris
- Hôpital Européen Georges Pompidou, APHP, J
 - SERM 1970, Paris, France

ARTERIAL STIFFNESS

Optimal stiffness of the aorta

- Diastolic relay of heart contraction
- Limits pressure rise
 during systole
- Limits diastolic pressure decay
- Improves coronary (diastolic) perfiusion
- Limits peripheral pulsatility

Stiff arteries

systolic/pulse pressurediastolic flow

Elastic arteries

systolic/pulse pressurediastolic flow

Arterial stiffness as a proxy of vascular aging

Laurent S et al.. ATVB 1994, Hypertension 1994, Hypertension 2005, Hypertension 2012, Circ Res 2015

SUPERNOVA and EVA

SUPERNOVA

Robert Marchand, 1911-2021 « I am aged, not old! »

Established 1h record over 100 y (32,5 km) over 105 y (22,8 km)

David Bowman accelerated aging and rebirth 2001 a Space Odyssey, HG Clarkes, S Kubrick

EVA - Early Vascular Ageing SUPERNOVA-supernormal vascular ageing

Nilsson P et al. J Hypertens 2008 Nilsson P et al. Hypertension 2009 Nilsson P et al. J Hypertens 2013 Cunha P et al. Curr Hypertens Rev 2017 Laurent S et al. Hypertension 2019 Olsen et al, Lancet 2016

EVA - Early Vascular Ageing SUPERNOVA-supernormal vascular ageing

Nilsson P et al. J Hypertens 2008 Nilsson P et al. Hypertension 2009 Nilsson P et al. J Hypertens 2013 Cunha P et al. Curr Hypertens Rev 2017 Laurent S et al. Hypertension 2019 Olsen et al, Lancet 2016

EVA - Early Vascular Ageing SUPERNOVA-supernormal vascular ageing

Bruno et al, Hypertension 2021

Progression of EVA

Reversibility of EVA

challenges PK/PD studies in space Pharmacological countermeasures

Spacefligths, Microgravity and early cardiovascular aging

Space pharmacology

Sontext

Health hazards during spaceflight

Radiation Bloo Microgravity Ner Confinement Stress and Isolation	Ge Cognition d-brain barrier Performance urovestibular Immune inflammation Iusculoskeletal Microbiome Pharmacology Renal	enome Ocular Nutrier Cardio Antio Slee Circadia Hepatia Endocri	Food (an at Requirer ovascular oxidant Pro p an rhythm c inology	Ad H ₂ O) System Waste System nents tection Environment Partial Gravity
--	--	---	---	---

Patel et al, Microgravity 2020

Effects of cosmic high energy radiations on the brain

Astroparticle Physics (SA1312

500 µm Apollo 12 Astronaunt Helmet

 Launch: 14th November 1969 . Landed 'Ocean of Storms': 19th November 1969 Returned 24th November 1969

Entry hole

Exit hole

Table 2. Estimates of cell loss fractions for Apollo 12 flight and hypothetical 2-year flight.

	Cell diameter (µm)	Nuclear diameter (µm)	Fraction lost (parts per million)	
Cells			Apollo 12 flight	2-Year flight*
Granular layer cerebellum	4	3.6	0.50-0.65	40-50
Light receptors	6×20	4	0.64-5.7	50-500
Cerebrum	19	4	2-14	16-120
Giant Betz	45	18	13-83	1,050-6,600
Anterior horn	70	25	26-200	2,000-16,000

* The flux was assumed to be the same as during the Apollo 12 flight.

Comstock et al, Science 1971

Liver function of long-term spaceflight in mice

Multiomic approach Mice flying 11 to 40 days

- Upregulation of CYP1A2, 2C29 and 2E2
- Non alcoholic liver Fatty disease
- Improper metabolism of lipids and glucide
- Forseen modification of drug metabolism

Moskaleva et al, 2015 Beheshti et al 2019 Winken et al 2022

Aging? Cardiovascular Disease Age Sex 70 Proportional Mortality Rate (%) Genetics Atherosclerosis 60 Myocardial Stroke 50 Lifestyle † ‡ Infarction 40 CARDIOVASCULAR Radiation DISEASE 30 20 Altered gravity * US POPULATION 55-04 NON-Flight Orbit All Flight Apollo Lunar Apollo Lunar 10 Hostile / Closed Distance environment from Earth Isolation / Confinement / Circadian shifts Inflammation/immunity Delp et al, Scient Rep 2016

Spaceflight induced Cardiovascular deconditioning

Early Vascular Aging?

Effect of long-term spatial conditions on carotid distensibility

Hugton et al, Am J Physiol Heart Circ Physiol. 2016 Engelen et al, J Hypertens 2015

EVERYWARE mission

Carotid pulse waveform

Time-changes in vascular age during and after 60 days head down bedrest

20 healthy males

- Age 32
- Vascular age lower baseline

Echotracking, tonometry, MRI

Boutouyrie et al, J Hypertens 2022

Pharmacology in space

Why is it needed ?

- Inefficiency of actual countermeasures
- Profound modification of body in space affecting drug PK/PD
- Very limited knowledge of PK/PD
- Documented failure of treatments
- No pharmacological countermeasures yet proposed for space related health issues including early vascular ageing
- Older less selected astronauts -> potential health issues
- Long term flights \rightarrow increased risk

Why is it missing ?

- Obstacles for pharmacological studies
- Logistical and technical constraints of sample biologics fluid
 - Venous puncture by non-professionals in microgravity
 - Risk of free-floating biomaterials
 - Sample storage (energy cost of -80° C)
 - Very limited lab facilities on board
 - Cost of sample retrieval

➔ practically impossible to perform

Pharmacological countermeasures

Microgravity and dry matrix spots

Dried Matrix Spot

Advan

Transfer of blood/urine drops in microgravity

- Easy and last collection by non-professionals
- Multiple possible dosages (infectious disease, genetics, etc)
- Safe, very low risk of biohazard
- light (< 3 grams/sample)</p>
- Easy to store (room temp. or +4°C)
- Very small volume 50 μL
- Adapted to repeated biological fluid sampling
- Very low cost
- Applicable to extreme situations

- Not all drugs are detectable (according to their chemical properties)
- Lesser control on fluid volume lesser precision

Parabolic flight validation

Results

- After 90 parabols
 - 127/128 drop transfers
 - No free flying drop or material
- Precision whithin specs compared to 1g conditions

2023 Pharmacology Space Kit- PSK

Validation of self-sampling of capillary blood and transfer to blotting paper in microgravity for caffeine dosage

- Blood : Caffeine as a proof of concept and probe for CYP 1A2
- Primary endpoint: feasibility of self-sampling
 30 healthy participants

100% of exploitable deposits

LOT 7238522 W201

Tuck Cover Here

TRANSATLANTIC MDRS CREW 261 MISSION SUMMARY

JAMES BURK ALINE DECADI CECILE RENAUD JULIEN VILLA-MASSONE KRIS DAVIDSON ERIN KENNEDY AUDREY DEROBERTMASURE

Crew Commander : James Burk Executive Officer and Safety Officer : Aline Decadi Crew Engineer : Julien Villa-Massone GreenHab Officer : Cécile Renaud Crew Journalist : Kris Davidson Crew Robotic : Erin Kennedy Medical Officer : Audrey Derobertmasure

PARIS TEAM: LOGISTIC AND MEDICAL SUPPORT

Liamine Kafi

Audrey Derobertmasure

Pierre Boutouyrie

Hakim Khettab

Rosa Maria Bruno

COSMOS PI: AUDREY DEROBERTMASURE

Cardiovascular Monitoring and pharmacology on mars:

- MAEVA Mars Early Vascular Ageing monitoring Daily cardiovascular monitoring and body composition
- PASKAL- Pharmacology Space Kit Analysis
 Self-management of biological samples in isolation

The HAB

Food on Mars

MAEVA – Blood pressure monitoring (Withings)

MAEVA – Pulse Wave Velocity measurements (pOpmètre)

MAEVA – Body composition (Withings: fat, muscle, bone and water mass (+ Heart Rate, VOP)

PASKAL – A pharmacokinetic study of caffeine and paraxanthine in blood and urine with dried matrices sampling methods

FEASIBILITY : PHARMACOKINETICS OF CAFFEINE (PASKAL)

- Pharmacokinetics of caffeine
 - 100% of samples were analyzed
 - Peaks of caffeine and metabolites (paraxanthine) easily detected
 - Expected pharmacokinetics obtained (results pending)
 - Modification linked to MRDS pending

FEASIBILITY : PHARMACOKINETICS OF CAFFEINE (PASKAL)

- 6 months storage,
- room temperature
- 50 microliters of blood

FEASIBILITY VASCULAR MEASUREMENTS (MAEVA)

- Measurement of finger toe pulse wave velocity (popmetre)
 - 95% of valid measurements
 - 5% failure caused by cold habitat and Raynaud Syndrome

- Measurements of body weight and body composition
 - 100% of valid measurement for weight
 - 95% of valid measurement for body composition
- Measurement of pulse wave velocity
 - 30% of valid measurements, measurement failures caused by cold feet and insufficient blood flow for impedancemetry

Results – Body Composition

Global Mass

Term-by-Term Hypothesis Test Results

Model	F-Value	Num	Denom	Prob
Term		DF	DF	Level
Jour_1	5.3533	12	53.0	0.000008

Fatty Mass

Term-by-Term Hypothesis Test Results

Model	F-Value	Num	Denom	Prob
Term		DF	DF	Level
Jour_1	1.3361	12	46.0	0.231793

Water Mass

Term-by-Term Hypothesis Test Results

Model	F-Value	Num	Denom	Prob
Term		DF	DF	Level
Jour_1	1.6699	12	46.0	0.105596

No statistical significance in the reduction of fat and water mass, but a statistically significant decrease in overall weight

MAEVA – Preliminary results

Variation of the Pulse Wave Velocity (PWV) over time (p=0.152)

 Non-significant statistical significance of systolic blood pressure (SBP) variations

Filter	Condition = "Usuel";"usuel"
Response	BPM Connect (tensiométre)
Subject	ID
Repeated	Jour_1

Term-by-Term Hypothesis Test Results

Model	F-Value	Num	Denom	Prob
Term		DF	DF	Level
Jour_1	1.1596	12	60.0	0.332357

Progressive decrease over time in PWV, without statistical significance

MAEVA – Arterial stiffness reduction is dependent on weight reduction

Filter	Condition = "Usuel"
Response	pOpmétre
Subject	ID
Repeated	Jour_1

Term-by-Term Hypothesis Test Results

Model Term	F-Value	Num DF	Denom DF	Prob Level
BODY C/	ARDIO (Balar	nce)		
	0.8289	໌ 1	21.9	0.372518
Jour 1	1.4104	12	33.7	0.209393
BODY C/	ARDIO (Balar	nce)* <mark>Jour</mark> 1		
	1.9206	12	33.6	0.067649

Interaction of PWV variables from the pOpmetre with weight over time.

CONCLUSIONS OF MRDS PASKAL AND MAEVA

Performing a full pharmacokinetic profile is feasible

- in total autonomy by trained non-medical staff
- Performing longitudinal monitoring of cardiovascular health is feasible
 - In total autonomy by trained non-medical staff
 - Based on finger to toe pulse wave velocity
 - Attention must be paid to details, including adequate warming of hands and feet
- The benefic effects of caloric restriction, physical exercise explain weight loss and improvement of PWV, and overcome the possible deleterious effects of stress, confinement and exhaustion

Photo credit: Kris Davidson

Vascular age by Body Cardio from Withings

Ballistocardiography (BCG)

- Newton's second law: actionreaction
 - Human heart ejects 150 g of blood at 2 m/s
 - The kinetic energy of blood dissipates in small vessels
 - The kinetic energy is transfered to the body, which oscillates until next beat

Starr, Am J Physiol 1939 Elliot, Circulation 1954 Pinheiro OBEJ 2010

Impedance plethysmography

- Ohm's law
 - Changes in electric impedance of a body segment due to blood flow

WITHINGS BODYSCAN applications for research: effect of lockdown during COVID pandemics

Bruno et al, Eur Hear J Dig Health 2022